Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira.

Identifieur interne : 000021 ( Main/Exploration ); précédent : 000020; suivant : 000022

The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira.

Auteurs : Alexandra-Sophie Roy [Allemagne] ; Christian Woehle [Allemagne] ; Julie Laroche [Canada]

Source :

RBID : pubmed:33123095

Abstract

Ferredoxins are iron-sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the petF gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the petF gene in 12 strains of Thalassiosira covering three species using DNA sequencing and qPCR assays. The results showed that petF gene is located in the nuclear genome of all confirmed Thalassiosira oceanica strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all Thalassiosira pseudonana (CCMP1012, 1013, 1014, and 1335) and Thalassiosira weissflogii (CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the petF gene in the Thalassiosirales. The realization that the petF gene is nuclear-encoded in the Skeletonema genus allowed us to trace the petF gene transfer back to a single event that occurred within the paraphyletic genus Thalassiosira. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the Thalassiosira strain CCMP1616, since the genes used in our study did not cluster within the T. oceanica lineage. Our results suggest that this strains' diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of petF genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.

DOI: 10.3389/fmicb.2020.523689
PubMed: 33123095
PubMed Central: PMC7566914


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus
<i>Thalassiosira</i>
.</title>
<author>
<name sortKey="Roy, Alexandra Sophie" sort="Roy, Alexandra Sophie" uniqKey="Roy A" first="Alexandra-Sophie" last="Roy">Alexandra-Sophie Roy</name>
<affiliation wicri:level="3">
<nlm:affiliation>Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Schleswig-Holstein</region>
<settlement type="city">Kiel</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Woehle, Christian" sort="Woehle, Christian" uniqKey="Woehle C" first="Christian" last="Woehle">Christian Woehle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne</wicri:regionArea>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laroche, Julie" sort="Laroche, Julie" uniqKey="Laroche J" first="Julie" last="Laroche">Julie Laroche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Dalhousie University, Halifax, NS, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Dalhousie University, Halifax, NS</wicri:regionArea>
<wicri:noRegion>NS</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33123095</idno>
<idno type="pmid">33123095</idno>
<idno type="doi">10.3389/fmicb.2020.523689</idno>
<idno type="pmc">PMC7566914</idno>
<idno type="wicri:Area/Main/Corpus">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000011</idno>
<idno type="wicri:Area/Main/Curation">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000011</idno>
<idno type="wicri:Area/Main/Exploration">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus
<i>Thalassiosira</i>
.</title>
<author>
<name sortKey="Roy, Alexandra Sophie" sort="Roy, Alexandra Sophie" uniqKey="Roy A" first="Alexandra-Sophie" last="Roy">Alexandra-Sophie Roy</name>
<affiliation wicri:level="3">
<nlm:affiliation>Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Schleswig-Holstein</region>
<settlement type="city">Kiel</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Woehle, Christian" sort="Woehle, Christian" uniqKey="Woehle C" first="Christian" last="Woehle">Christian Woehle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne</wicri:regionArea>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laroche, Julie" sort="Laroche, Julie" uniqKey="Laroche J" first="Julie" last="Laroche">Julie Laroche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Dalhousie University, Halifax, NS, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Dalhousie University, Halifax, NS</wicri:regionArea>
<wicri:noRegion>NS</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ferredoxins are iron-sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the
<i>petF</i>
gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the
<i>petF</i>
gene in 12 strains of
<i>Thalassiosira</i>
covering three species using DNA sequencing and qPCR assays. The results showed that
<i>petF</i>
gene is located in the nuclear genome of all confirmed
<i>Thalassiosira oceanica</i>
strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all
<i>Thalassiosira pseudonana</i>
(CCMP1012, 1013, 1014, and 1335) and
<i>Thalassiosira weissflogii</i>
(CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the
<i>petF</i>
gene in the Thalassiosirales. The realization that the
<i>petF</i>
gene is nuclear-encoded in the
<i>Skeletonema</i>
genus allowed us to trace the
<i>petF</i>
gene transfer back to a single event that occurred within the paraphyletic genus
<i>Thalassiosira</i>
. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the
<i>Thalassiosira</i>
strain CCMP1616, since the genes used in our study did not cluster within the
<i>T</i>
.
<i>oceanica</i>
lineage. Our results suggest that this strains' diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of
<i>petF</i>
genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33123095</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus
<i>Thalassiosira</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>523689</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.523689</ELocationID>
<Abstract>
<AbstractText>Ferredoxins are iron-sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the
<i>petF</i>
gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the
<i>petF</i>
gene in 12 strains of
<i>Thalassiosira</i>
covering three species using DNA sequencing and qPCR assays. The results showed that
<i>petF</i>
gene is located in the nuclear genome of all confirmed
<i>Thalassiosira oceanica</i>
strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all
<i>Thalassiosira pseudonana</i>
(CCMP1012, 1013, 1014, and 1335) and
<i>Thalassiosira weissflogii</i>
(CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the
<i>petF</i>
gene in the Thalassiosirales. The realization that the
<i>petF</i>
gene is nuclear-encoded in the
<i>Skeletonema</i>
genus allowed us to trace the
<i>petF</i>
gene transfer back to a single event that occurred within the paraphyletic genus
<i>Thalassiosira</i>
. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the
<i>Thalassiosira</i>
strain CCMP1616, since the genes used in our study did not cluster within the
<i>T</i>
.
<i>oceanica</i>
lineage. Our results suggest that this strains' diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of
<i>petF</i>
genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.</AbstractText>
<CopyrightInformation>Copyright © 2020 Roy, Woehle and LaRoche.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>Alexandra-Sophie</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Woehle</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>LaRoche</LastName>
<ForeName>Julie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Dalhousie University, Halifax, NS, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PETF</Keyword>
<Keyword MajorTopicYN="N">T. oceanica</Keyword>
<Keyword MajorTopicYN="N">T. pseudonana</Keyword>
<Keyword MajorTopicYN="N">T. weissflogii</Keyword>
<Keyword MajorTopicYN="N">Thalassiosira genus</Keyword>
<Keyword MajorTopicYN="N">ferredoxin</Keyword>
<Keyword MajorTopicYN="N">gene transfer</Keyword>
<Keyword MajorTopicYN="N">phylogenetics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>5</Hour>
<Minute>53</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33123095</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.523689</ArticleId>
<ArticleId IdType="pmc">PMC7566914</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12218172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22121212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Dec;22:38-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25306530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Oct 12;294(5541):309-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2010 Apr;161(2):237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2015 Aug;89:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25848969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jun;114(2):615-622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(6):1060-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 18;9(9):e107854</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25233465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 08;10(6):e0129081</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26052941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phycol. 2008 Apr;44(2):335-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27041190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Mar 22;555(7697):534-537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29539640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2009 Jan;50(1):197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Dec;21(12):655-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1962 Apr;8:229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13902807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 6;422(6927):72-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 May 14;393(6681):162-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11560168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 May;9(5):383-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18368053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2444-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2014 Mar;6(3):644-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24567305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Feb;5(2):123-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14735123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:491-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2007 Apr;158(2):193-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 14;459(7244):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 18;441(7091):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16572122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2012 Oct 26;12:209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23102148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011 Sep 20;11:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Jun 24;12(6):e1001889</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24959919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jul 10;281(5374):237-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Jul;19(7):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12850441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3480529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E6015-E6024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28673987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Jan 27;19(2):R81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 Nov 25;2:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22275908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17167050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Mar 9;14(5):354-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15028209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12817081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2008 Jun;30(6):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18478535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 7;431(7009):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Dec;26(12):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27524662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2012 Jul 26;13(7):R66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22835381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Oct;21(10):1972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phycol. 2008 Jun;44(3):821-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27041440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2009 May;9 Suppl s1:65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21564966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e45664</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2007 Oct;45(1):193-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 26;346(6282):376-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Sep;9(9):868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Oct 06;5(10):e13234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20949086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Dec 17;396(6712):699-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9872321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Dec 20;11:718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21171997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26553804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Sep 23;4:273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24065961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jan;5(1):e1000323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2005 Feb;43(2):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2019 Jul 1;11(7):1829-1837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31218358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Apr 13;7(5):1227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25869380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Apr;277(4):427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17252281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:115-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 2;315(5812):612-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2008 Apr;83(2):127-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18506096</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
</country>
<region>
<li>Schleswig-Holstein</li>
</region>
<settlement>
<li>Kiel</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Schleswig-Holstein">
<name sortKey="Roy, Alexandra Sophie" sort="Roy, Alexandra Sophie" uniqKey="Roy A" first="Alexandra-Sophie" last="Roy">Alexandra-Sophie Roy</name>
</region>
<name sortKey="Woehle, Christian" sort="Woehle, Christian" uniqKey="Woehle C" first="Christian" last="Woehle">Christian Woehle</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Laroche, Julie" sort="Laroche, Julie" uniqKey="Laroche J" first="Julie" last="Laroche">Julie Laroche</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33123095
   |texte=   The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33123095" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020